Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology ; 36(Suppl 1), 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1971027

RESUMEN

Severe viral pneumonia caused by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is characterized by a hyperinflammatory state typified by elevated circulating pro‐inflammatory cytokines, frequently leading to potentially lethal vascular complications including thromboembolism, disseminated intracellular coagulopathy and vasculitis. Though endothelial infection and subsequent endothelial damage have been described in patients with fatal COVID‐19, the mechanism by which this occurs remains elusive, particularly given that, under naïve conditions, pulmonary endothelial cells demonstrate minimal cell surface expression of the SARS‐CoV‐2 binding receptor ACE2. Herein we describe SARS‐CoV‐2 infection of the pulmonary endothelium in postmortem lung samples from individuals who died of COVID‐19, demonstrating both heterogeneous ACE2 expression and endothelial damage (Figure). In primary endothelial cell cultures, we show that SARS‐CoV‐2 infection is dependent on the induction of ACE2 protein expression and that this process is facilitated by type 1 interferon‐alpha (IFNα) or ‐beta(β) ‐ two of the main anti‐viral cytokines induced in severe SARS‐CoV‐2 infection ‐ but not significantly by other cytokines (including interleukin 6 and interferon g /λ). Our findings suggest that the stereotypical anti‐viral interferon response may paradoxically facilitate the propagation of COVID‐19 from the respiratory epithelium to the vasculature, raising concerns regarding the use of exogenous IFNα/β in the treatment of patients with COVID‐19.

2.
Am J Pathol ; 192(4): 595-603, 2022 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1734138

RESUMEN

While the human placenta may be infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the rate of fetal transmission is low, suggesting a barrier at the maternal-fetal interface. Angiotensin-converting enzyme (ACE)2, the main receptor for SARS-CoV-2, is regulated by a metalloprotease cleavage enzyme, a disintegrin and metalloprotease domain 17 (ADAM17). ACE2 is expressed in the human placenta, but its regulation in relation to maternal SARS-CoV-2 infection in pregnancy is not well understood. This study evaluated ACE2 expression, ADAM17 activity, and serum ACE2 abundance in a cohort of matched villous placental and maternal serum samples from control pregnancies (SARS-CoV-2 negative, n = 8) and pregnancies affected by symptomatic maternal SARS-CoV-2 infections in the second trimester [2nd Tri coronavirus disease (COVID), n = 8] and third trimester (3rd Tri COVID, n = 8). In 3rd Tri COVID compared with control and 2nd Tri COVID villous placental tissues, ACE2 mRNA expression was remarkably elevated; however, ACE2 protein expression was significantly decreased with a parallel increase in ADAM17 activity. Soluble ACE2 was also significantly increased in the maternal serum from 3rd Tri COVID infections compared with control and 2nd Tri COVID pregnancies. These data suggest that in acute maternal SARS-CoV-2 infections, decreased placental ACE2 protein may be the result of ACE2 shedding and highlights the importance of ACE2 for studies on SARS-CoV-2 responses at the maternal-fetal interface.

3.
Infectious Medicine ; 2022.
Artículo en Inglés | PMC | ID: covidwho-1720101
4.
Angiogenesis ; 25(2): 225-240, 2022 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1491183

RESUMEN

Severe viral pneumonia caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a hyperinflammatory state typified by elevated circulating pro-inflammatory cytokines, frequently leading to potentially lethal vascular complications including thromboembolism, disseminated intracellular coagulopathy and vasculitis. Though endothelial infection and subsequent endothelial damage have been described in patients with fatal COVID-19, the mechanism by which this occurs remains elusive, particularly given that, under naïve conditions, pulmonary endothelial cells demonstrate minimal cell surface expression of the SARS-CoV-2 binding receptor ACE2. Herein we describe SARS-CoV-2 infection of the pulmonary endothelium in postmortem lung samples from individuals who died of COVID-19, demonstrating both heterogeneous ACE2 expression and endothelial damage. In primary endothelial cell cultures, we show that SARS-CoV-2 infection is dependent on the induction of ACE2 protein expression and that this process is facilitated by type 1 interferon-alpha (IFNα) or -beta(ß)-two of the main anti-viral cytokines induced in severe SARS-CoV-2 infection-but not significantly by other cytokines (including interleukin 6 and interferon γ/λ). Our findings suggest that the stereotypical anti-viral interferon response may paradoxically facilitate the propagation of COVID-19 from the respiratory epithelium to the vasculature, raising concerns regarding the use of exogenous IFNα/ß in the treatment of patients with COVID-19.


Asunto(s)
COVID-19 , Enzima Convertidora de Angiotensina 2 , Citocinas , Células Endoteliales , Humanos , Interferón-alfa , SARS-CoV-2
5.
arxiv; 2021.
Preprint en Inglés | PREPRINT-ARXIV | ID: ppzbmed-2107.10397v1

RESUMEN

In this work, we study the pandemic course in the United States by considering national and state levels data. We propose and compare multiple time-series prediction techniques which incorporate auxiliary variables. One type of approach is based on spatio-temporal graph neural networks which forecast the pandemic course by utilizing a hybrid deep learning architecture and human mobility data. Nodes in this graph represent the state-level deaths due to COVID-19, edges represent the human mobility trend and temporal edges correspond to node attributes across time. The second approach is based on a statistical technique for COVID-19 mortality prediction in the United States that uses the SARIMA model and eXogenous variables. We evaluate these techniques on both state and national levels COVID-19 data in the United States and claim that the SARIMA and MCP models generated forecast values by the eXogenous variables can enrich the underlying model to capture complexity in respectively national and state levels data. We demonstrate significant enhancement in the forecasting accuracy for a COVID-19 dataset, with a maximum improvement in forecasting accuracy by 64.58% and 59.18% (on average) over the GCN-LSTM model in the national level data, and 58.79% and 52.40% (on average) over the GCN-LSTM model in the state level data. Additionally, our proposed model outperforms a parallel study (AUG-NN) by 27.35% improvement of accuracy on average.


Asunto(s)
COVID-19 , Discapacidades para el Aprendizaje
6.
Compr Physiol ; 11(3): 2227-2247, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1287337

RESUMEN

Pericytes are mesenchymal-derived mural cells localized within the basement membrane of pulmonary and systemic capillaries. Besides structural support, pericytes control vascular tone, produce extracellular matrix components, and cytokines responsible for promoting vascular homeostasis and angiogenesis. However, pericytes can also contribute to vascular pathology through the production of pro-inflammatory and pro-fibrotic cytokines, differentiation into myofibroblast-like cells, destruction of the extracellular matrix, and dissociation from the vessel wall. In the lung, pericytes are responsible for maintaining the integrity of the alveolar-capillary membrane and coordinating vascular repair in response to injury. Loss of pericyte communication with alveolar capillaries and a switch to a pro-inflammatory/pro-fibrotic phenotype are common features of lung disorders associated with vascular remodeling, inflammation, and fibrosis. In this article, we will address how to differentiate pericytes from other cells, discuss the molecular mechanisms that regulate the interactions of pericytes and endothelial cells in the pulmonary circulation, and the experimental tools currently used to study pericyte biology both in vivo and in vitro. We will also discuss evidence that links pericytes to the pathogenesis of clinically relevant lung disorders such as pulmonary hypertension, idiopathic lung fibrosis, sepsis, and SARS-COVID. Future studies dissecting the complex interactions of pericytes with other pulmonary cell populations will likely reveal critical insights into the origin of pulmonary diseases and offer opportunities to develop novel therapeutics to treat patients afflicted with these devastating disorders. © 2021 American Physiological Society. Compr Physiol 11:2227-2247, 2021.


Asunto(s)
COVID-19 , Pericitos , Células Endoteliales , Humanos , Pulmón , SARS-CoV-2
7.
PLoS One ; 16(3): e0246681, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1117478

RESUMEN

Central nervous system and visual dysfunction is an unfortunate consequence of systemic hypoxia in the setting of cardiopulmonary disease, including infection with SARS-CoV-2, high-altitude cerebral edema and retinopathy and other conditions. Hypoxia-induced inflammatory signaling may lead to retinal inflammation, gliosis and visual disturbances. We investigated the consequences of systemic hypoxia using serial retinal optical coherence tomography and by assessing the earliest changes within 24h after hypoxia by measuring a proteomics panel of 39 cytokines, chemokines and growth factors in the plasma and retina, as well as using retinal histology. We induced severe systemic hypoxia in adult C57BL/6 mice using a hypoxia chamber (10% O2) for 1 week and rapidly assessed measurements within 1h compared with 18h after hypoxia. Optical coherence tomography revealed retinal tissue edema at 18h after hypoxia. Hierarchical clustering of plasma and retinal immune molecules revealed obvious segregation of the 1h posthypoxia group away from that of controls. One hour after hypoxia, there were 10 significantly increased molecules in plasma and 4 in retina. Interleukin-1ß and vascular endothelial growth factor were increased in both tissues. Concomitantly, there was significantly increased aquaporin-4, decreased Kir4.1, and increased gliosis in retinal histology. In summary, the immediate posthypoxic period is characterized by molecular changes consistent with systemic and retinal inflammation and retinal glial changes important in water transport, leading to tissue edema. This posthypoxic inflammation rapidly improves within 24h, consistent with the typically mild and transient visual disturbance in hypoxia, such as in high-altitude retinopathy. Given hypoxia increases risk of vision loss, more studies in at-risk patients, such as plasma immune profiling and in vivo retinal imaging, are needed in order to identify novel diagnostic or prognostic biomarkers of visual impairment in systemic hypoxia.


Asunto(s)
Hipoxia/complicaciones , Inflamación/etiología , Retina/patología , Animales , Sistema Nervioso Central/patología , Citocinas/análisis , Citocinas/sangre , Femenino , Hipoxia/sangre , Hipoxia/patología , Inflamación/sangre , Inflamación/patología , Péptidos y Proteínas de Señalización Intercelular/análisis , Péptidos y Proteínas de Señalización Intercelular/sangre , Masculino , Ratones Endogámicos C57BL
8.
ISPRS International Journal of Geo-Information ; 10(2):53, 2021.
Artículo en Inglés | MDPI | ID: covidwho-1050615

RESUMEN

COVID-19 containment policies are not only curbing the spread of COVID-19 but also changing human behavior. According to the routine activity theory, owing to lockdown, the closure of entertainment sites (e.g., pubs and bars), an increase in stay-at-home time, and an increase in police patrols are likely to influence chance of committing a crime. In this study, we aimed to further examine the spatial association of COVID-19 infection rate and crime rate. Particularly, we empirically validated the speculation that increase in COVID-19 cases is likely to reduce crime rate. In the empirical study, we investigated whether and how COVID-19 infection rate is spatially associated with crime rate in London. As the spatial data used are mainly areal data, we adopted a spatial regression mode (i.e., the “random effects eigenvector spatial filtering model”) to investigate the spatial associations after controlling for the socioeconomic factors. More specifically, we investigated the associations for all the four crime categories in three consequent months (March, April, and May of 2020). The empirical results indicate that 1) crime rates of the four categories have no statistically significant associations with COVID-19 infection rate in March;2) violence-against-the-person rate has no statistically significant association with COVID-19 infection rate;and 3) robbery rate, burglary rate, and theft and handling rate have a statistically significant and negative association with COVID-19 infection rate in both April and May.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA